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ABSTRACT

AGSI-based EnVar data assimilation system is extended to directly assimilate radar reflectivity to initialize

convective-scale forecasts. When hydrometeor mixing ratios are used as state variables (method mixing ra-

tio), large differences of the cost function gradients with respect to the small hydrometeor mixing ratios and

wind prevent efficient convergence. Using logarithmic mixing ratios as state variables (method logarithm)

fixes this problem, but generates spuriously large hydrometeor increments partly due to the transform to and

from the logarithmic space. The tangent linear of the reflectivity operators further contributes to spuriously

small and large hydrometeor increments in method mixing ratio and method logarithm, respectively. A new

method is proposed by directly adding the reflectivity as a state variable (method dBZ). Without the tangent

linear and adjoint of the nonlinear operator, the newmethod therefore avoids the aforementioned problems.

The newly proposed method is examined on the analysis and prediction of the 8 May 2003 Oklahoma City

tornadic supercell storm. Both the probabilistic forecast of strong low-level vorticity and maintenance of

strong updraft and vorticity in method dBZ are more consistent with reality than in method logarithm and

method mixing ratio. Detailed diagnostics suggest that a more realistic cold pool due to the better analyzed

hydrometeors in method dBZ than in other methods leads to constructive interaction between the surface

gust front and the updraft aloft associated with the midlevel mesocyclone. Similar low-level vorticity forecast

and maintenance of the storm are produced by the WSM6 and Thompson microphysics schemes in method

dBZ. The Thompson scheme matches the reflectivity distribution with the observations better for all lead

times, but shows more southeastward track bias compared to the WSM6 scheme.

1. Introduction

Owing to high spatial and temporal resolution capable

of sampling the structure of the convective storms,

Doppler radar radial velocity and reflectivity are the

most commonly used observations for storm-scale nu-

merical weather prediction (NWP) (Sun 2005; Dowell

et al. 2011). Numerous studies (Daley 1991; Sun and

Crook 1997, 1998; Snyder and Zhang 2003; Dowell et al.

2004; Tong and Xue 2005; Caya et al. 2005; Xiao et al.

2005; Gao and Xue 2008; Xu et al. 2008; Jung et al. 2008;

Dowell andWicker 2009; Aksoy et al. 2009; Yussouf and

Stensrud 2010; Lu and Xu 2009; Xue et al. 2009; Zhang

et al. 2009; Dowell et al. 2011; Gao and Stensrud 2012;

Sun and Wang 2013; Wang et al. 2013; Yussouf et al.

2013; Johnson et al. 2015) investigated the impact of

radar data assimilation and indicated the benefits from

assimilating these data for convective-scale analysis and

prediction. However, challenges for the assimilation of

radar data still remain, especially for the reflectivity

observations (Dowell et al. 2011; Gao and Stensrud

2012).

Early studies employed the cloud analysis method to

adjust some of the first-guess variables, such as cloud

liquid water, cloud ice, and precipitation species (rain,

snow, and hail), based on the observed reflectivity to

initialize the convective-scale NWP (Albers et al. 1996;

Brewster 1996; Zhang et al. 1998; Zhang 1999; Souto

et al. 2003; Xue et al. 2003; Hu et al. 2006). To mitigate

the spinup problem in the short-range forecast associ-

ated with the cloud analysis, several methods were im-

plemented to adjust the associated thermodynamical

variables. These methods include a moisture and dia-

batic initialization scheme developed by Zhang et al.

(1998) and Zhang (1999), an in-cloud temperature ad-

justmentmethodmodified byHuet al. (2006), and a digital

filter by Weygandt et al. (2008). Current operational or
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semi-operational meso- and convective-scale NWP sys-

tems such as the Rapid Refresh (RAP), the High-

Resolution Rapid Refresh (HRRR), and the North

AmericanMesoscaleRapidRefresh (NAMRR) adopt the

cloud analysis method and a digital filter technique to

derive the hydrometeor mixing ratios from the reflectivity

observations and to adjust the latent heating tomatch with

these derived fields (Weygandt and Benjamin 2007;

Weygandt et al. 2008; Carley et al. 2015; Benjamin et al.

2016). Although a positive impact of using an improved

cloud analysis is found based on the description of the

important characteristics of storms in early studies (e.g.,

Hu et al. 2006), the cloud analysis method relies on em-

pirical algorithms to relate the hydrometeor variables and

the reflectivity, and requires tuning of many uncertain

parameters (e.g., Gao and Stensrud 2012).

Recently, an increasing number of studies have star-

ted to use the ensemble Kalman filter (EnKF) to directly

assimilate reflectivity (e.g., Dowell et al. 2004; Tong and

Xue 2005; Jung et al. 2008; Lei et al. 2009; Dowell et al.

2011; Yussouf et al. 2013; Johnson et al. 2015). EnKF

estimates the covariance between the observed vari-

ables and the model state variables, including un-

observed variables, through an ensemble of forecasts.

Through the ensemble covariances, the reflectivity is

used to directly update hydrometeor, thermal, and dy-

namical fields in a dynamically and thermodynamically

coherent fashion (e.g., Dowell et al. 2004). These pre-

vious studies have demonstrated encouraging results

using EnKF to assimilate radar data including direct

assimilation of reflectivity, to improve the storm-scale

analysis and forecast. As discussed in Dowell et al.

(2011), efforts are still needed to further improve the

EnKF assimilation of reflectivity. Such efforts include

developing covariance localization methods that can be

adaptive to the clear-air and precipitating regions, im-

proving model simulated prior reflectivity by further

reducing errors inmicrophysics parameterization scheme

and observation operator, and developing methods to

take into account the non-Gaussianity of both the back-

ground and observation errors, which violate the as-

sumption in the EnKF.

Unique difficulties also remain in the variational data

assimilation framework to directly assimilate reflectivity

observations. One difficulty is associated with the tan-

gent linear and adjoint of the nonlinear observation

operator, which are typically used explicitly in the var-

iational minimization. First, Sun and Crook (1997)

found that in their four-dimensional variational data

assimilation (4DVar) system, a large gradient of the

observation term of the cost function with respect to

the small rainwater mixing ratio prevents efficient con-

vergence. Therefore, worse results were obtained from

direct assimilation of reflectivity than from assimilation

of retrieved rainwater mixing ratios in their studies.

Second, Wang et al. (2013a,b) found in their 3DVar and

4DVar systems that there is a large difference between

the nonlinear reflectivity operator and its tangent linear

approximation, especially for the small rainwatermixing

ratios. This deficiency can lead to overestimation of the

nonlinear reflectivity perturbations and therefore an

underestimation of the rainwater content in the analysis.

Therefore, instead of direct assimilation of the re-

flectivity observations, rainwater and water vapor were

first retrieved from radar reflectivity before being as-

similated by their 3DVar and 4DVar systems. However,

due to the large errors associated with the rainwater

retrieval for the strong convective region, only re-

flectivity less than 55 dBZwas used in their study. Carley

(2012) also mentioned a similar problem of over-

estimated reflectivity perturbations if the hydrometeor

mixing ratios are used as the state variables. In addition,

Carley (2012) also discussed that using the logarithm of

themixing ratio can reduce this error but can also lead to

underestimation of the nonlinear reflectivity perturba-

tions. Third, the reflectivity operator depends on the

microphysics schemes. Therefore, efforts to redevelop

or update the tangent linear and adjoint of the re-

flectivity operator would be needed whenever the mi-

crophysics scheme is changed.

In the present study we propose a new method to

overcome the above problems to achieve direct assimi-

lation of radar reflectivity observations in the variational

data assimilation framework. This new method extends

the state variables to include the observed variable,

reflectivity, and therefore does not need the tangent

linear and adjoint of the reflectivity operator. This

method thus avoids the aforementioned problem for

direct reflectivity assimilation in the traditional varia-

tional method. The new method is derived and applied

in the EnVar [see Lorenc (2013) and Wang and Lei

(2014) for nomenclature]. Unlike the traditional varia-

tional system, EnVar implicitly uses ensemble co-

variances to estimate the background error covariance.

This feature means that the new method does not re-

quire the use of the adjoint of the observation operator

to spread the observed information to the model vari-

ables as used in the traditional variational system.

The new method is implemented in the GSI-based

EnVar system. GSI-based EnVar and its variants have

been successfully implemented for the NCEP GFS

global forecast (Wang et al. 2013; Wang and Lei 2014;

Kleist and Ide 2015; Kutty andWang 2015). Efforts have

been made since to further extend the system for

convective-scale data assimilation. Lu et al. (2017) ex-

tended the GSI-based EnKF and EnVar system to
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assimilate airborne radar radial wind observations for

the Hurricane Weather Research and Forecasting Model

(HWRF) for hurricane initialization and prediction.

Johnson et al. (2015) extended the GSI-based EnKF to

assimilate ground-based radar wind and reflectivity ob-

servations for multiple complex, convectively active cases

with multiple storm modes and interactions in a hetero-

geneous environment. Carley (2012) assimilated radar

observations in the GSI-based hybrid for the Non-

hydrostatic Multiscale Model on the B grid (NMMB)

through passive use of the coarse-resolution ensemble

available from an independent source. The current study

further extends the EnVar capability inGSI for convective-

scale data assimilation by solving the aforementioned

problems of direct assimilation of radar reflectivity obser-

vations in the variational framework.

The new method is applied to the analysis and pre-

diction of the 8 May 2003 Oklahoma City (OKC) tor-

nadic supercell storm. This study is therefore among the

first published studies to investigate the aforementioned

problems associated with the tangent linear and adjoint

of the nonlinear operator within the coupled ensemble–

variational (EnVar) method for direct convective-scale

radar reflectivity assimilation using a real-data case.

The GSI-based EnVar algorithm, the development of

the radar radial velocity assimilation, and the develop-

ment of the reflectivity assimilation with various hy-

drometeor state variables including the newly proposed

method in GSI-based EnVar are provided in section 2.

Problems with using the hydrometeor mixing ratios and

the logarithmic hydrometeor mixing ratios state vari-

ables for the direct reflectivity assimilation in GSI-based

EnVar and how the new method overcomes these prob-

lems are investigated through analytical approaches in

section 3. An overview of the 8 May 2003 Oklahoma City

tornadic supercell storm, and the design of the experi-

ments are then presented in the section 4. Section 5 de-

scribes the results of using various hydrometeor state

variables including the new approach for the reflectivity

assimilation on the analysis and prediction of the 8 May

tornadic supercell storm case. A summary and discussion

are given in the section 6.

2. Methodology

a. GSI-based EnVar formulation

Lorenc (2013) and Wang and Lei (2014) defined

the acronyms of various flavors of the coupled

ensemble-variational data assimilation. This paper fo-

cuses on the EnVar flavor. Different from a hybrid

system, an EnVar system utilizes a pure ensemble co-

variance rather than blending the ensemble covariance

with the static covariance. Wang (2010) described the

mathematical details of the GSI-based EnVar formula-

tions. For consistency, the description of the formula

herein parallels that of Wang (2010).

Briefly, the analysis increment x0 is defined as

x0 5 �
K

k51
(a

k
+xek) . (1)

In Eq. (1), xek denotes the kth ensemble perturbation

divided by
ffiffiffiffiffiffiffiffiffiffiffiffi

K2 1
p

. The K denotes the ensemble size.

The vectors ak, k 5 1, . . . , K, are the unitless control

vectors (CV) for each ensemble member, and form the

vector a. The symbol + is the Schur product. The fol-

lowing cost function is minimized to obtain the analysis

increment:

J(a)5 0:5(a)TA21(a)1 0:5(yo
0
2Hx0)TR21(yo

0
2Hx0) .

(2)

The first term of Eq. (2) on the right-hand side is asso-

ciated with the flow-dependent covariance. Here A is a

block-diagonal matrix and defines the localization ap-

plied to the ensemble covariance. The last term is the

observation term (Jo), where R is the observation error

covariance,H is the linearized observation operator, and

yo
0
is the innovation vector. The gradient of the cost

function [Eq. (2)] with respect to control variables a is

given as

=
a
J5A21a1DTHTR21(Hx02 yo

0
) , (3)

where D is denoted as [diag(xe1) . . . diag(x
e
k)]. Note that

the GSI-based EnVar houses both a three-dimensional

algorithm called 3DEnVar (Wang et al. 2013) and its

four-dimensional extension (4DEnVar; e.g., Wang and

Lei 2014). As detailed in the appendix of Wang and Lei

(2014), 4DEnVar extends both the increment [Eq. (1)]

and the observation term in the cost function [Eq. (2)]

from 3D to 4D. The new algorithm method dBZ in this

study applies for both 3DEnVar and 4DEnVar. There-

fore, in the algorithm description we do not specify

3DEnVar or 4DEnVar. It is noted, however, that the

experiments in this study are all conducted using

3DEnVar.

b. Developing radar radial velocity assimilation in
GSI-based EnVar

Johnson et al. (2015) described extending the GSI-

based EnKF to assimilate radar radial velocity and

reflectivity. This paper focuses on introducing the ex-

tension of the GSI-based EnVar to assimilate these data

directly. Both the forward and adjoint of the radial
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velocity (Vr) observation operator are implemented in

EnVar. The forward operator for Vr is calculated as

V
r
5u sinu cosm1 y cosu cosm1w sinm , (4)

where m is the elevation angle and u is the azimuth angle

of radar beams (Sun 2005; Gao and Stensrud 2012); and

u, y, and w represent zonal, meridional, and vertical veloc-

ities, respectively. In Eq. (1), u, y, and w are included in xek.

c. Developing radar reflectivity assimilation in
GSI-based EnVar

Reflectivity is a measure of the signals returned from

the remote hydrometeors to the radar receivers (Doviak

and Zrnić 1993). To investigate the impacts of the dif-

ferent hydrometeor state variables for direct assimilation

of reflectivity, hydrometeor mixing ratios (method mixing

ratio), logarithmic hydrometer mixing ratios (method

logarithm), and the newly proposed method of augment-

ing the state variables to directly use the reflectivity itself as

the state variable (method dBZ) are implemented in the

GSI-based EnVar system with the Advanced Research

Weather Research and Forecasting Model (WRF-ARW).

To illustrate these methods, the radar reflectivity obser-

vation operator consistent with the WSM6 microphysics

scheme (Hong and Lim 2006) is used following Lin et al.

(1983), Gilmore et al. (2004), Tong and Xue (2005),

Dowell et al. (2011), and Johnson et al. (2015).

1) USE OF HYDROMETEOR MIXING RATIOS AS

STATE VARIABLES (METHOD MIXING RATIO)

In this method, rainwater qr, snow qs, and graupel qg
mixing ratios are assigned in x0. Both the tangent linear

and adjoint of the reflectivity observation operator with

respect to these hydrometeor mixing ratios are im-

plemented in the GSI-based EnVar.

The observation operator for reflectivity follows

Johnson et al. (2015). The operator was developed for

the WSM6 microphysics scheme based on Lin et al.

(1983), Tong and Xue (2005), Dowell et al. (2011), and

Gao and Stensrud (2012). Mathematically,

H(q
r
, q

s
, q

g
)5Z

dB
5 10 logZ

e
, (5)

whereZe is the equivalent radar reflectivity factor and is

contributed by the equivalent radar reflectivity factor

from all three hydrometeors—rainwater Zr, snow Zs,

and graupel Zg as follows:

Z
e
5Z

r
1Z

s
1Z

g
. (6)

Hereafter, to be concise, only the contribution from

graupel is used as a representative example. The

equivalent reflectivity factor contributed from the

graupel mixing ratio is defined as

Z
g
5 4:333 1010 3 (rq

g
)1:75, (7)

where r is the air density and qg is the graupel mixing

ratio. The tangent linear of H(qr, qs, qg) in Eq. (5) is

derived by adding a small perturbation to the hydro-

meteor mixing ratio and by only maintaining the linear

term after the Taylor expansion. For example, the tan-

gent linear of H(qr, qs, qg) with respect to qg is

H
qg
5

103 4:333 1010 3 r1:75 3 1:753 (q
g
)0:75

log(10)3Z
e

. (8)

Note that Eq. (8) is valid only when Ze is greater than

zero. In this study, the rainwater, snow, and graupel

mixing ratios are reset to be 1026, 1029, and 1028 kgkg21

if the values are smaller than these thresholds. Similar

values are used in theWRFWSM6microphysics scheme.

2) USE OF LOGARITHMIC TRANSFORM OF

HYDROMETEOR MIXING RATIOS AS STATE

VARIABLES (METHOD LOGARITHM)

In method logarithm, the reflectivity observation

operator is the same as method mixing ratio. The

primary difference lies in the hydrometeors used in

the x0 term in Eq. (2). Instead of assigning the mixing

ratios to x0, the logarithmic transform is applied to the

hydrometeor mixing ratios and these transformed

variables are introduced into x0 in the variational

minimization. In this study, this method is im-

plemented in the GSI-based EnVar for WRF-ARW.

A similar approach was implemented for the NMMB

model (Carley 2012).

We denote q̂r, q̂s, and q̂g for the rainwater, snow, and

graupel mixing ratios in logarithmic form, respectively,

which are defined as q̂r 5 log(qr), q̂s 5 log(qs), and

q̂g 5 log(qg). The equivalent reflectivity factor Zg con-

tributed from the graupel mixing ratio is then defined as

Z
g
5 4:333 1010 3 (r3 10q̂g)1:75. (9)

The tangent linear of H(q̂r, q̂s, q̂g) with respect to q̂g is

H
q̂g
5

103 4:333 1010 3 r1:75 3 1:753 (10q̂g)1:75

Z
e

. (10)

Both the forward and tangent linear of the reflectivity

operator in method logarithm are not valid when Ze is

zero. Similar to rainwater, snow and graupel mixing

ratios thresholds as in method mixing ratio are used to

avoid this problem.
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3) AUGMENTING STATE VARIABLES WITH

REFLECTIVITY (METHOD dBZ)

As mentioned by Sun and Crook (1997) and discussed

in detail in the next section, the variational minimization

in method mixing ratio has difficulty to converge. To-

gether with the linear approximation of the nonlinear

operator, method mixing ratio produces spuriously

small hydrometeor increments. As shown in this study,

method logarithm is able to alleviate this large gradient

problem. However, method logarithm produces spuri-

ously large hydrometeor increments. A new method

(method dBZ) is introduced and described in this

subsection to solve these problems. Method dBZ aug-

ments the state variables in x0 in Eq. (2) by directly in-

cluding the reflectivity variable as a state variable.

Therefore, the tangent linear of H with respect to re-

flectivity is an identity:

H
dBZ

5 I . (11)

Since the tangent linear and adjoint (TLA) of an

identity matrix is also equal to an identity, the TLA of

the reflectivity operator no longer exists in the EnVar

minimization in method dBZ. In other words, method

dBZ allows an EnVar to avoid the TLA of the nonlinear

operator by extending the model state variables to in-

clude the observed variables. Similar extension of the

state variable was adopted for a pure EnKF with a dif-

ferent purpose, which was to enable a parallel im-

plementation of a serial ensemble filter (Anderson and

Collins 2007). Independent studies by Zupanski (2005)

and Liu et al. (2008) suggested ways of using an en-

semble in the variational framework to avoid the use of

the TLA of the observation operator. Unlike this study,

neither Zupanski (2005) nor Liu et al. (2008, 2009) in-

cludes the ensemble covariance localization inside the

variational minimization. It can be proven (not shown)

that their solutions are ultimately equivalent to Eq. (11)

(i.e., the algorithm used in method dBZ) if covariance

localization is not implemented inside the variational

minimization. In addition, unlike Zupanski (2005) and

Liu et al. (2008), this study motivates the new method

dBZ not only for the convenience of avoiding the de-

velopment of the TLA of a nonlinear observation op-

erator, but also more importantly through revealing the

fundamental, methodological problems of using the

TLA of the nonlinear operator in EnVar.

The reflectivity operator is often dependent on the

microphysics schemes. Method dBZ by design does not

use the TLAof the reflectivity operator. Therefore, once

the forward reflectivity is obtained, the variational

minimization in method dBZ does not depend on the

microphysics scheme.Method dBZ also saves the efforts

of developing the TLA of the nonlinear operator, which

is nontrivial especially for complicated operators.

3. Problems with hydrometeor mixing ratio
(method mixing ratio) and logarithmic
hydrometeor mixing ratio (method logarithm) in
GSI-based EnVar

a. Cost function gradient

Sun and Crook (1997) mentioned the difficulty of

direct assimilation of reflectivity observations in their

4DVar system because the low values of rainwater

mixing ratios can lead to large gradients of the obser-

vation term Jo of the cost function, which can prevent

efficient convergence during the variational minimi-

zation. Therefore, in their 4DVar system, the direct

assimilation of reflectivity performed worse than as-

similating the rainwater mixing ratios retrieved from

reflectivity. In this subsection, the impact of using the

three methods of hydrometeor variables on the gradi-

ent of the cost function for the GSI-EnVar is revealed

using both an analytical approach and an approach with

the sample of data collected over a region of active

convection (35.148–36.078N, 97.828–96.818W, hereafter

‘‘active region’’) from the 8 May tornadic supercell

experiment.

Figure 1 shows the gradient of Jo with respect to a for

the three different reflectivity DA methods. The fol-

lowing procedures are followed to produce Fig. 1. In the

=aJ term of Eq. (3), the gradient of Jo is given by

=
a
J
o
5DTHTR21(Hx0 2 yo

0
) , (12)

and the term Hx0 2 yo
0
is assumed to be 25dBZ for the

reflectivity and 4ms21 for the radial velocity. The ob-

servation error standard deviation is assumed to be 5dBZ

for the reflectivity and 2ms21 for the radial velocity, re-

spectively. Similar observation error values were used in

early studies for storm-scale radar data assimilation ex-

periments (Dowell et al. 2004; Yussouf et al. 2013;

Johnson et al. 2015). To illustrate the problem of the cost

function gradient for method mixing ratio, a 45-member

first-guess ensemble valid at 2150 UTC 8 May 2003 over

the active region is used. Each grid point is assumed to

have one radial velocity and one reflectivity observation

located at an elevation angle of 108 and an azimuth angle

of 458. The gradient of Jo with respect to the extended

control variables a is calculated for each grid point and

each ensemble member in this region. The contributions

of the radial velocity and the radar reflectivity to this

gradient are separately plotted in Fig. 1. In other words,
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each point in Fig. 1 is a pair of Jo gradients contributed

from the radial velocity and reflectivity.

The gradients of Jo contributed from radial velocity

for all three reflectivity DA methods are the same. The

DT in Eq. (12) comprises the ensemble perturbations of

zonal u, meridional y, and vertical w velocities. The HT

in Eq. (12) is the transpose of the tangent linear of the

radial velocity forward operator defined in Eq. (4).

Similar procedures are applied to calculate the gradient

of Jo contributed from dBZ for all three reflectivity DA

methods. In method mixing ratio, DT is formed from

the ensemble perturbations of mixing ratios for rain qr,

snow qs, and graupel qg. The HT is the transpose, or

adjoint, of the tangent linear ofH(qr, qs, qg) with respect

to qr, qs, and qg. An example of the tangent linear of H

(qr, qs, qg) with respect to qg, Hqg is given by Eq. (8). A

similar derivation is applied for Hqr and Hqs. In the calcu-

lation of the tangent linear of the reflectivity operator, the

ensemble mean field is used as the reference.

In method logarithm, the ensemble perturbations of

the logarithmic hydrometeor mixing ratios are used to

define DT. The HT is the transpose of the tangent linear

of H(q̂r, q̂s, q̂g) with respect to logarithmic rainwater

Hq̂r, snow Hq̂s, and graupel Hq̂g mixing ratios. The deri-

vations for Hq̂s and Hq̂r are similar to Eq. (10) for Hq̂g.

In method dBZ, DT includes the ensemble perturba-

tions of the reflectivity. As shown in section 2c(3), since

the tangent linear of the reflectivity operator are iden-

tities in method dBZ, HT is an identity.

As shown in Fig. 1, in method mixing ratio, the gra-

dient of Jo contributed from reflectivity is dominantly

large, where the largest value is greater than 300. In

FIG. 1. Contributions (unit: 1) to the gradient of Jo from reflectivity (dBZ, x axis) and radial velocity (Vr, y axis) for

(a) method mixing ratio, (b) method logarithm, and (c) method dBZ.
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comparison, the maximum gradient of Jo contributed

from radial velocity is less than 60. Such large differ-

ences in the cost function gradients can cause imbalance

during the variational minimization and prevent effi-

cient convergence. This result is consistent with that of

4DVar in Sun and Crook (1997). The gradients of Jo
contributed from reflectivity are greatly reduced in both

method logarithm and method dBZ. Both maxima are

less than 60, which is similar to the gradient of Jo con-

tributed from radial velocity.

The following is an analytical explanation of the dif-

ferences of the Jo gradients among the three hydrometeor

variable methods. Figure 2a shows the tangent linear of

the reflectivity operator with respect to the graupel

mixing ratio in method mixing ratio [Eq. (8)]. The tan-

gent linear of the reflectivity operator in method mixing

ratio has large values, especially with small values of

graupel mixing ratio. For example, when the graupel mix-

ing ratio is 1 3 1024kgkg21, the Hqg term is larger than

15 000 dBZ (kg kg21)21. This is further confirmed by

examining Eq. (8). For example, if only the graupel

mixing ratio contributes to the reflectivity, the simplified

Eq. (8) will be

H
qg
5

17:5

log(10)3 (q
g
)
. (13)

Because the variable qg is in the denominator, a small qg
when the reflectivity is close to zero can lead to a very

large value returned from the linearized operator. A sim-

ilar derivation of Eq. (13) was employed in Sun and Crook

(1997) andWang et al. (2013a) in their 4DVar and 3DVar

systems. Sun and Crook (1997) have attempted to allevi-

ate the large gradient problem by setting the gradient of

FIG. 2. Derivative of reflectivity with respect to (a) graupelmixing ratio, (b) logarithmic graupelmixing ratio, and

(c) reflectivity itself. The figure uses the same mixing ratio for rainwater and snow, which is 1 3 1024 kg kg21 and

graupel mixing ratio varies from 1 3 1024 to 1 3 1022 kg kg21 for the calculation.

APRIL 2017 WANG AND WANG 1453

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/19/23 04:11 PM UTC



Jo to be zero if the mixing ratio is less than a specified

value. However, they found that this modification of the

gradient problem led to large forecast errors in the regions

where the mixing ratio is lower than the specified value.

After applying the logarithmic transform to the

hydrometeor mixing ratios in method logarithm, the

value returned from the linearized observation op-

erator is greatly reduced to be no larger than about

17.5dBZ [log(kgkg21)]21 (Fig. 2b).According toEq. (10),

when the graupel mixing ratio is relatively large, the

reflectivity contributed from rainwater and snow mix-

ing ratios can be neglected in the denominator. Be-

cause the logarithmic mixing ratios related terms in the

numerator and denominator almost cancel each other

out, the values returned from the linearized opera-

tor approximate a constant 17.5 dBZ [log(kg kg21)]21.

When the graupel mixing ratio is small and equivalent

to the other types of hydrometeor mixing ratios, the

value returned from the linearized operator can be less

than 17.5 dBZ [log(kg kg21)]21 (Fig. 2b). As discussed

in section 2c(3), the observation operator in method

dBZ is an identity. Therefore, its tangent linear value is

reduced to be equal to 1 dBZ dBZ21 (Fig. 2c).

In Eq. (12), the innovation term Hx0 2 yo
0
and the

observation error variances R are fixed. Therefore, the

large gradient of Jo in method mixing ratio is attributed

to DT and HT. Further analysis of the results in Figs. 1

and 2 shows that the anomalously large Jo gradient

contributed from the reflectivity in Fig. 1a in method

mixing ratio is primarily attributed to the large value of

the gradient of the reflectivity operator (i.e., HT) with

respect to small hydrometeor mixing ratio values.

b. Problem with the logarithmic transform

In method logarithm, the logarithmic hydrometeor

mixing ratios are updated and then transformed back into

the mixing ratio space. Since the logarithmic transform

is nonlinear, the analysis produced in logarithmic space

is not equivalent to the analysis produced without the

logarithmic transform. To illustrate the impact of the

logarithmic transform on the increments, single-pseudo-

observation experiments are used following this equation,

dx5
PbHT

HPbHT 1R
(y2Hx

b
) , (14)

where Pb is the background error covariance, H is the

observation operator, y is the observation vector, R is

the observation error covariance, and xb is the back-

ground (Lorenc 1986). This formula allows the impact of

the logarithmic transform to be isolated without being

affected by the linear approximation of the nonlinear

reflectivity operator, which will be discussed section 3c.

In the pseudo-observation experiments, a radar re-

flectivity observation with an innovation of 10 dBZ and

an observation error of 5 dBZ is assimilated. In other

words, y2Hxb, HP
bHT, and R are the same for method

mixing ratio, method logarithm, and method dBZ.

Through Eq. (14), when a reflectivity observation is as-

similated method mixing ratio and method dBZ update

rainwater, snow, and graupel mixing ratios directly

through the cross correlation between reflectivity and

hydrometeor mixing ratios estimated by the flow-

dependent ensemble error covariance. The increments

of hydrometeor mixing ratios in method mixing ratio

and method dBZ are the same. In method logarithm,

rainwater, snow, and graupel mixing ratios in loga-

rithmic form are updated through the cross correlation

between reflectivity and logarithmic hydrometeor mix-

ing ratio estimated by the flow-dependent ensemble

error covariance. To collect a large sample of ensemble

covariances from the 8 May case experiments, a number

of pseudo-single-observations located at all the model

grid points over the active region are created. Note that

the ensemble from which the ensemble covariance is

derived for method mixing ratio and method loga-

rithm is the same. Here the graupel mixing ratio valid at

2150 UTC is chosen as an example in Fig. 3.

Figure 3 shows that the increments inmethod logarithm

is far greater than that in methodmixing ratio andmethod

dBZ, and the maximum increments in method logarithm

are almost 2 times larger than in the other two methods.

To further explain the cause of such differences, we

choose a point valid at 2150 UTC near the hook echo

and calculate the increments using Eq. (14) as a function

of a range of innovation values from 1 to 35dBZ for

method mixing ratio and method logarithm, respec-

tively. Note again, y2Hxb, HP
bHT, and R are the same

for both method mixing ratio and method logarithm.

Therefore, the differences seen are solely attributed to

the difference between using the mixing ratios or their

logarithmic forms as state variables and the forward

and backward transform to and from the logarithm. As

shown in Fig. 4, the increment is amplified during the

transform. For example, when the graupel mixing ratio

increment is 0.603 1023 kg kg21 in methodmixing ratio,

the corresponding graupel mixing ratio increment in

logarithmic space is 0.57 log(kgkg21) in method loga-

rithm, as shown on the left axis in Fig. 4. After trans-

forming back to the mixing ratio space, the mixing ratio

increment corresponding to 0.57 log(kg kg21) is 1.23 3
1023 kg kg21 as shown on the right axis in Fig. 4. This is

twice as large as the increment by method mixing ratio

of 0.603 1023 kg kg21.Methodmixing ratio andmethod

dBZ do not share the same problem as no logarithmic

transform is involved.
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c. Problem associated with the linear approximation
of the nonlinear reflectivity operator

Another cause of errors in the hydrometeor in-

crements is specific to the use of the tangent linear of the

reflectivity operator (i.e., the linear approximation of a

nonlinear operator in the variational minimization).

Within the variational method, the tangent linear ap-

proximation H is applied in the observation term of the

cost function [Eq. (2)]. During the minimization, Hx0 is
iteratively adjusted toward the innovation yo

0
. However,

since H is a linear approximation of the full nonlinear

operator, such an approximation may lead to errors in

the increment x0. Such error applies to both method

mixing ratio andmethod logarithm because both involve

the tangent linear approximation. Such an approxima-

tion is not applied in method dBZ since its operator is an

identity. Figure 5 shows the tangent linear reflectivity

perturbations Hqg 3 dqg and Hq̂g 3 dq̂g, respectively, for

methodmixing ratio andmethod logarithm as a function

of the graupel mixing ratio increments. The averaged

mixing ratios of rainwater, snow, and graupel from the

active region valid at 2150 UTC are used to calculateHqg

and Hq̂g in Fig. 5. The corresponding true reflectivity

perturbation using the nonlinear (NL) operator is also

shown. In Fig. 5, when the reflectivity perturbation is

small, such as less than 4dBZ, the increments of graupel

mixing ratio in all three methods are almost equal. This

result is within expectation as the error associated with

the linear approximation increases with an increasing

increment. When the innovation increases from 4 to

8 dBZ, the increments of the graupel mixing ratios in

method mixing ratio are still a close approximation

to NL, but the increments in method logarithm are

larger than NL. In other words, the graupel mixing ra-

tios are overly adjusted. For example, when the in-

novation of the reflectivity is 7 dBZ, the increments of

the graupel mixing ratios inmethodmixing ratio andNL

are;0.93 1023 kgkg21; while the increment in method

logarithm is ;2.0 3 1023 kg kg21. Further increasing

the innovation over 10 dBZ, the linear approximation

of the observation operator in method mixing ratio un-

derestimates the increments of the graupel mixing ratios

while method logarithm still overestimates the in-

crements. The underestimated hydrometeor mixing ra-

tio increments in method mixing ratio revealed in Fig. 5

are also explained byWang et al. (2013a) in their 3DVar

system. The overestimated hydrometeor mixing ratio

increments in method logarithm demonstrated in Fig. 5

are consistent with that briefly discussed in Carley

(2012). In method dBZ, the reflectivity itself is applied

as the state variable. As a result, the errors associated

with the linearization of the nonlinear reflectivity

operator are avoided. In addition, because this new

method method dBZ does not use the tangent linear of

the operator, it avoids the outer loops, which are used in

traditional variational systems (Rosmond and Xu 2006)

to reduce errors associated with the linear approxima-

tion of the nonlinear operator. More detailed discussion

is offered in section 6. Note also that the problems

FIG. 4. Graupel mixing ratio increment in method logarithm

(y axis) against that in method mixing ratio/method dBZ (x axis)

corresponding to the innovation increasing from 1 to 35 dBZ. The

left y axis represents the increments in logarithmic form and the

right y axis is the mixing ratio increments backward transformed

from the logarithm space. The graupel mixing ratio first guess is

4.53 3 1024 kg kg21 for the calculation in this figure.

FIG. 3. Graupel mixing ratio increment in method logarithm

(y axis) against that in method mixing ratio and method dBZ

(x axis). See text for more details.
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associated with method logarithm and method mixing

ratio revealed in this section do not depend on micro-

physics schemes.

4. Experiment design

In this section, GSI-based EnVar with the three dif-

ferent reflectivity DAmethods is applied to analysis and

prediction of the 8 May 2003 Oklahoma City supercell

case. The impacts of using the three methods are studied

from both the rationality of the analyses and the lon-

gevity of the predicted storms. The experiment design is

described in this section followed by the results in

section 5.

a. Overview of the 8 May 2003 Oklahoma City
tornadic supercell case

The 8 May 2003 Oklahoma City (OKC) isolated

supercell produced a violent tornado rated F-4 on the

Fujita scale in Moore, Oklahoma. On 8 May 2003, the

overall synoptic-scale environment over Oklahoma was

governed by a typical weather pattern conducive

for tornadic storms. A dryline was located in west-central

Oklahoma with several storm cells along it by 2050 UTC,

and a new cell that emerged by;2100UTC. This new cell

developed into an isolated supercell in the next hour.

The supercell moved northeastward and spawned a

violent tornado from 2210 to 2238 UTC, which tracked

east-northeastward for about 30 km (Yussouf et al.

2013). The supercell storm developed and moved east-

northeastward and lasted for more than 3 h starting

from ;2100 UTC, weakened by 2300 UTC 8 May, and

finally dissipated after 1 h at ;0020 UTC 9 May (Hu

and Xue 2007).

b. Design of assimilation and forecasts experiments

In this study, a single domain (Fig. 6), which is con-

figured the same as the inner domain of Yussouf et al.

(2013), is adopted. This domain uses a grid spacing

of 2 km with 226 3 181 horizontal grid points and

50 vertical levels. A 45-member ensemble is run. A

similar number of ensemble members were used in

earlier convective scale radar data assimilation (e.g.,

Yussouf et al. 2013; Johnson et al. 2015). Only radar

data are assimilated in this domain. The initial and

lateral boundary conditions (ICs and LBCs) for this

domain are interpolated from the mesoscale ensemble

from the outer domain of Yussouf et al. (2013). Briefly,

this mesoscale domain covers the continental United

States (CONUS) with a horizontal grid spacing of

18 km and a 267 3 178 3 50 grid. An ensemble ad-

justment Kalman filter (EAKF) is used to assimilate

the routinely available observations from Meteoro-

logical AssimilationData Ingest System (MADIS) into

the ensemble.

Version 3.5.1 of WRF-ARW is used in the present

study. The model physics configuration includes the

Kain–Fritsch cumulus parameterization (Kain and Fritsch

1993), the Mellor–Yamada–Janjić planetary boundary

layer scheme (Mellor and Yamada 1982; Janjić 1990,

1994, 2002), theWRF single-moment 6-class microphysics

FIG. 6. The domain for the storm-scale ensemble analyses and

forecasts. The overlaid blue line in the figure is the NWS-observed

tornado damage track during 2210–2238 UTC.

FIG. 5. Relationship between radar reflectivity perturbations and

graupel mixing ratio increments for the tangent linear reflectivity

operator w.r.t hydrometeor mixing ratios (dotted line) and loga-

rithm of hydrometeor mixing ratio (dashed line). The nonlinear

(NL) reflectivity perturbation (solid line) used in method dBZ is

shown as a reference.
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scheme (WSM6; Hong and Lim 2006), the Noah land

surface model (Chen and Dudhia 2001), the Dudhia

shortwave radiation scheme (Dudhia 1989), and theRapid

Radiative Transfer Model (RRTM) longwave radiation

scheme (Mlawer et al. 1997).

A two-way coupled GSI-based EnVar data assimila-

tion method is applied for the storm-scale assimilation.

Detailed procedures of the two-way coupled EnVar can

be found in Wang et al. (2013). The procedure of radar

data assimilation and the subsequent forecast is shown

in Fig. 7. Starting at 2100 UTC 8 May 2003, the radar

data are assimilated every 5min for a 1-h period out to

2200 UTC. The 1-h forecasts are then launched from

each of the 45-member analyses and the control analysis

initialized at 2200 UTC. The control forecast is updated

using the EnVar where ensemble perturbations are ap-

plied to estimate the background error covariance through

the use of the extended control variable method. Cutoff

distances of 12km and 1.1 scale height (e.g., a difference in

natural log of pressure of 1.1)1 are used for the horizontal

and vertical localizations, respectively. Similar cutoff dis-

tances are used in earlier studies assimilating radar ob-

servations using an ensemble-based method (e.g., Yussouf

et al. 2013; Johnson et al. 2015). The ensemble perturba-

tions are updated by the ensemble smoother version of the

square root filter algorithm (EnSRF;Whitaker andHamill

2002). The analysis ensemble is further recentered around

the control analysis to obtain the finial ensemble analysis.

Covariance localization and inflation are used to account

for system errors when updating the perturbations with

EnSRF. Cutoff distances in the horizontal and vertical are

the same as those used in the EnVar. The posterior en-

semble spread is relaxed back to 90% of the prior en-

semble spread using the relaxation to prior spread (RTPS;

Whitaker and Hamill 2012) inflation method. To further

account for the deficiency of the spread of the first-guess

ensemble in the EnSRF, both the constant inflation and

additive noise (Whitaker et al. 2008; Dowell and Wicker

2009; Dowell et al. 2011; Dawson et al. 2012; Jung et al.

2012; Wang et al. 2013; Yussouf et al. 2013) are applied

wherever the observed radar reflectivity is greater than

25dBZ. The constant inflation is applied with a coefficient

of 1.04 to each ensemble perturbation in every assimilation

cycle. The additive noise is applied to the horizontal winds,

temperature, and dewpoint analyses at the first six cycles,

and their standard deviations are 0.5ms21, 0.5K, and

0.5K, respectively. The horizontal and vertical length

scales of 3km are used for the perturbation smoothing

function. These parameters are chosen based on our sen-

sitivity tests. The additive perturbations are added to the

analyses in order to establish the flow-dependent structure

of these perturbations during the 5-min model integration

(Wang et al. 2013).

The NEXRAD level-2 data archived at the National

Climatic Data Center (NCDC) are used to provide the

radar reflectivity and radial velocity observations for

this study. The Warning Decision Support System-

Integrated Information (WDSSII; Lakshmanan et al.

2007) software is used to quality control these data, as in

Johnson et al. (2015). Reflectivity values below or equal

to 5 dBZ and missing values are considered to be ‘‘no

precipitation’’ observations and are set to 0 dBZ

(Yussouf et al. 2013). Spurious convection generated in

the model can be suppressed through assimilating these

no precipitation observations. The same observation

errors in section 3, 2m s21 and 5dBZ, for radial velocity

and reflectivity are applied in the real data experiments.

Three EnVar experiments are conducted using the

three different reflectivity DA methods described in

section 2. All three experiments use the WSM6 (Hong

and Lim 2006) microphysics scheme. Another experi-

ment using the Thompson (Thompson et al. 2008) mi-

crophysics scheme is included in section 5f to further

evaluate the impact of this microphysics scheme and the

flexibility of method dBZ.

5. Results

a. Observation-space diagnostics

We use observation-space diagnostics (Dowell et al.

2004; Dowell and Wicker 2009; Dowell et al. 2011;

Yussouf et al. 2013), including the root-mean-square of

FIG. 7. Schematics of data assimilation experiment configuration. The radar data assimilation

adopts the 5-min cycling, driven by the mesoscale analyses and forecasts. The 1-h forecast is

then initialized by the analysis at 2200 UTC after 1-h assimilation.

1 For example, if the observation is at 900 hPa, the corresponding

pressure above 900 hPa associated with a 1.1 scale height cutoff

distance is 300 hPa [absolute value of ln(300/900) is 1.1].
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innovation (RMSI) and total ensemble spread (total

spread), to compare the influences of the three different

reflectivity DA methods. The innovation here denotes

the observation minus control forecast mapped to the

observation location. The RMSI indicates the agree-

ment between the forecasts and the observations, and

the total spread provides information about the esti-

mated forecast uncertainty (Yussouf et al. 2013). RMSI

and total spread statistics are shown in Fig. 8 for the

assimilated KTLX (Oklahoma City, Oklahoma) radial

velocity and reflectivity observations during the 1-h

assimilation period for the 8 May 2003 supercell storm.

The root-mean-square fit of the analysis to the obser-

vations is also included. Similar to Yussouf et al. (2013)

and many other publications, only the locations with

observed reflectivity greater than 10 dBZ are used to

calculate the reflectivity statistics and the radial velocity

statistics are calculated at the available observed loca-

tions without any threshold.

The RMSI of the posterior in method mixing ratio is

larger than that from method logarithm and method

dBZ, especially for the reflectivity observations. This

FIG. 8. Observation-space diagnostic statistics for the assimilated KTLX (a) radial velocity (Vr) and

(b) reflectivity (dBZ) for method dBZ (blue), method logarithm (red), and methodmixing ratio (green) during the

1-h data assimilation period. The upper points and lower points of the sawtooth patterns in (a) and (b) correspond

to the background and analysis statistics, respectively. The statistics includeRMSI (solid) and total spread (dotted).

(c),(d) As in (a),(b), but for first-guess vertical profiles.

1458 MONTHLY WEATHER REV IEW VOLUME 145

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/19/23 04:11 PM UTC



result is consistent with the results in sections 3a and 3c.

The cost function gradient contributed by the reflectivity

is much larger than that contributed by the radial ve-

locity, which prevents efficient convergence of varia-

tional minimization. The deficiency of ill-conditioned

convergence in method mixing ratio leads to less fit of

the analysis to both the radial velocity and reflectivity

observations. The lower fit of the posterior to the re-

flectivity is further exacerbated by the underestimate of

the hydrometeor increments due to the errors associated

with the linear approximation of the nonlinear operator

in method mixing ratio. As a result, method mixing ratio

produces less fit of the subsequent 5-min forecast to

observations, especially for reflectivity.

The RMSI of the posterior for the radial velocity

observations is similar in method logarithm and method

dBZ, with a slight reduction of forecast fit to observa-

tions by method dBZ. However, for the reflectivity, the

analysis and forecast in method logarithm fit the ob-

servationsmore than those inmethod dBZ. This result is

consistent with the findings in sections 3b and 3c, where

method logarithm is shown to overestimate the hydro-

meteor mixing ratio increments. As shown later in sec-

tion 5e, the anomalously large hydrometeor increments

by method logarithm, and therefore excessive fit to ob-

servations, can cause an overly strong and widespread

cold pool in the forward flank. The overly strong cold

pool cuts off the constructive interaction between the

surface gust front and the updraft aloft associated with

the midlevel mesocyclone, producing a simulated su-

percell much shorter lived than in reality. The under-

dispersive ensemble is a common problem in radar data

assimilation at convective scales as shown in early studies

(Dowell andWicker 2009; Aksoy et al. 2009; Dowell et al.

2011; Snook et al. 2011, 2012; Yussouf et al. 2013). Con-

sistent with these earlier works, the total ensemble

spreads for both reflectivity and radial velocity are con-

sistently smaller than the RMSI in all three experiments.

The total spreads from all three reflectivity DA methods

are similar in magnitude for reflectivity (Figs. 8b,d) after

15min when the RMSI and spread statistics become

stable. The spreads for radial velocity are also similar,

except that method mixing ratio has a slightly smaller

spread after 40min (Fig. 8a), which mainly results from

the smaller spread from 450 to 250hPa (Fig. 8c).

The reflectivity analyses are further compared with

the observations for the first 30min for all threemethods

in Fig. 9 to reveal the spinup process during the data

assimilation cycling. Here the spinup time is defined as

the time needed for the system to reach a stable or sat-

urated value. Consistent with Fig. 8b, all three methods

reach their stable reflectivity value at about 2115 UTC,

the third DA cycle. Note that at the second cycle

(2110 UTC), method logarithm shows a larger reflec-

tivity value. However, this value is still smaller than its

own saturated value. Therefore, no method stands out

showing a faster spinup than the others, although their

final saturated values are different. Specifically, method

logarithm has the largest saturation value, method dBZ

the second largest, and method mixing ratio has the

smallest saturation value. As documented in section 3

and discussed above for Fig. 8 and section 5e, due to the

methodological problems of method logarithm and

methodmixing ratio, the overly large and small reflectivity

values in their analyses lead to the shorter-lived supercell

than in reality.

b. Ensemble probabilistic forecasts of low-level
vorticity

To evaluate the impact of the choice of the different

reflectivity DA methods on the forecasts, we first verify

the forecast against the observed tornado track. Since

the 2-km grid spacing is not able to explicitly depict a

tornado circulation, the presence of low-level rotation

(vorticity) instead is used to represent a forecast tornado

probability (Stensrud andGao 2010; Dawson et al. 2012;

Stensrud et al. 2013; Yussouf et al. 2013; Thompson et al.

2015). Forecast probabilities (Fig. 10) of the vorticity

exceeding 0.003 s21 at 150m AGL are calculated at a

neighborhood with a 6-km radius around each grid

point. The neighborhood method is used to account for

the small displacement errors across the ensemble

members (Theis et al. 2005; Mittermaier 2007; Ebert

2009; Schwartz et al. 2010; Bouallegue et al. 2011;

Johnson and Wang 2012; Yussouf et al. 2013). Results

indicate that the low-level mesocyclone persisted during

the entire 1-h forecast for method dBZ. The high

probabilities (above 95%) of significant mesocyclones

correlate well with the observed tornado track and ex-

tend beyond the track (Fig. 10a). In comparison, the

forecast probabilities of vorticity in method logarithm

are much lower after the 25-min lead time. In method

mixing ratio, the swaths of high probability of vorticity

also match well with the observed tornado track at early

lead time, but become lower than 95% after the 45-min

forecast time. As discussed in section 4a, the tornado-

producing supercell lasts beyond the track of the tor-

nado. Therefore, method dBZ maintains the supercell

more consistently with the reality than method mixing

ratio. The threshold of vorticity should only show up

around the observed tornado track. However, spurious

vorticity spreads over almost the entire western do-

main in method logarithm (Fig. 10b), which is more

extensive than both method dBZ (Fig. 10a) and

method mixing ratio (Fig. 10c). Method mixing ratio

shows the least spurious vorticity. It is speculated that
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the extensively spurious vorticity in method logarithm

is due to the strong and widespread cold pool, resulting

from the overestimated hydrometeor increments,

leading to the development of new spurious convective

cells.

c. Forecasts of midlevel updraft and vorticity

We further explore the influences of the three differ-

ent reflectivity DA methods on the maintenance of the

supercell storm by examining the vertical velocity and

vorticity in midlevels (4 km) during a 1-h forecast period

(2200–2300 UTC) in Fig. 11.

All three experiments generate strong mesocyclones

at the analysis time (2200 UTC), with the maximum

updraft larger than 30m s21 and the maximum vorticity

greater than 1.2 3 1022 s21 at the 4-km height. The

primary differences lie in their capability of maintaining

the tornado-producing supercell during the entire 1-h

FIG. 9. The reflectivity (colors; dBZ) analysis at 1 km AGL for (a)–(f) method dBZ, (g)–(l) method logarithm, and (m)–(r) method

mixing ratio from each data assimilation cycle during the first 30-min data assimilation period. The first column is the corresponding

reflectivity observations from KTLX.
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forecast period. The storm in method dBZ persists

during the entire 1-h forecast period. The maximum

updraft in method dBZ is above 30ms21 for the entire

forecast period. The maximum vorticity in method dBZ

remains above 1.0 3 1022 s21 until the 50-min forecast

lead time. For method logarithm, the supercell storm

starts to weaken at the 5–10-min forecast lead time. For

example, the maximum updraft is reduced to below

25ms21 at about 5min, and the maximum vorticity is

reduced to below 1.0 3 1022 s21 at about 10min. The

storm further dissipates at the 20-min forecast lead time.

A spurious cell develops and follows the main supercell,

with its updraft much weaker than method dBZ at the

1-h lead time. In method mixing ratio, while the storm is

maintained much longer than method logarithm, it

weakens more quickly than method dBZ. Specifically,

the maximum updraft is reduced to below 25m s21

after the 10-min lead time and the maximum vorticity

weakened to below 1.0 3 1022 s21 at the 20-min

lead time.

d. Reflectivity analyses and forecasts

Distributions of reflectivity analyses and forecasts are

widely used to examine the overall location and

characteristics of the simulated storms (Xiao et al. 2007;

Hu and Xue 2007; Lei et al. 2009; Gao and Stensrud

2012; Yussouf et al. 2013). For comparison purpose, we

first present the KTLX-observed reflectivity at a 15-min

interval during the forecast period from 2200 to

2300 UTC in Fig. 12. The reflectivity observations are

interpolated to 1 km AGL using the NOAA’s Weather

and Climate Toolkit (WCT), distributed from NOAA/

NCDC. Evolutions of reflectivity at 1 km AGL during

the 1-h forecast period for the three experiments are

plotted in Figs. 13a–o.

After a 1-h data assimilation, reflectivity analyses

from all three experiments are able to reproduce the

hook-echo structure at approximately the correct loca-

tion (Figs. 13a,f,k), as well as the strong low-level

rotation at 1 km AGL, which compare well with the

KLTX radar observations (Fig. 12a). The reflectivity

distribution in the forward-flank region in method dBZ

(Fig. 13a) is closer to the size and shape of the observed

forward-flank regions than in method logarithm

(Fig. 13f) and method mixing ratio (Fig. 13k). Method

logarithm produces reflectivity analyses with the largest

area of reflectivity higher than 50dBZ; while method

mixing ratio has the smallest region. This is mainly due

FIG. 10. Neighborhood ensemble probability (%) of vorticity exceeding thresholds of 0.003 s21 at 150m AGL

during 1-h forecast period initialized from the analyses at 2200 UTC and ending at 2300 UTC for the (a) method

dBZ, (b) method logarithm, (c) method mixing ratio, and (d) method dBZ thom. The overlaid squiggly line in each

panel is the NWS-observed tornado damage track during 2210–2238 UTC.
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to the different distributions of the analyzed hydrome-

teors in these experiments. The distributions of rain-

water and snow mixing ratios (not shown) are similar

with the graupel mixing ratio. As an example, the dis-

tributions of the graupel mixing ratio, from the analyses

at around the melting layer (5 km) are shown in Fig. 14.

Consistent with the discussion in sections 3b and 3c that

method logarithm produces overly large hydrometeor

mixing ratio increments, method logarithm produces the

greatest graupel mixing ratio in the analysis (Fig. 14b).

FIG. 11. The evolution of vertical velocity (colors; m s21) and vorticity (contours starting from 0.002 s21 in 0.002 s21 interval) at 4 km

AGL during a 1-h forecast period starting from the analyses at 2200 UTC and ending at 2300 UTC from the (a)–(g) method dBZ,

(h)–(n) method logarithm, (o)–(u) method mixing ratio, and (v)–(z),(aa),(ab) method dBZ thom. The top row represents the last analysis

time valid at 2200 UTC and the second to seventh rows are for the forecast time valid at 2210, 2220, 2230, 2240, 2250, and 2300 UTC,

respectively. The overlaid line in each panel is as in Fig. 7.
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Method mixing ratio generates the smallest amount of

graupel mixing ratios (Fig. 14c), consistent with the

discussion in sections 3a and 3c.

The predicted supercell reflectivity in method dBZ

maintains its hook-echo structure until 45min (Fig. 13d).

Method logarithm and method mixing ratio lose their

hook-echo structures by the 15-min (Fig. 13g) and

30-min (Fig. 13m) forecast lead times, respectively.

Compared tomethod dBZ, the flanks gradually separate

into several patches in method mixing ratio and method

logarithm. In all three methods, the reflectivity dis-

tributions in the forecast are further to the northeast

and narrower than the reflectivity observations after a

30-min lead time (Figs. 13c–e, h–j, m–o). As shown and

discussed in section 5f, this result is largely due to the use

of the WSM6 microphysics scheme. Although the pre-

dicted reflectivity does not compare well with the ob-

served reflectivity, the maximum vorticity at 1 km AGL

near the hook echo from method dBZ remains above

6 3 1023 s21 during the entire 1-h forecast period

(Figs. 13a–e). In method logarithm, the rotation at 1 km

AGL starts to weaken at the 30-min lead time, with the

maximum vorticity near the southwestern end of the

storm less than 5 3 1023 s21 (Fig. 13h). The rotation

dissipates and is replaced by the rear spurious rotation.

For method mixing ratio, the rotation at 1 km AGL

keeps weakening over the 1-h forecast period with the

maximum vorticity near the hook echo reduced to below

5 3 1023 s21 by the 15-min lead time (Fig. 13l).

e. Impacts of the cold pool

This subsection explores further how the use of the

different hydrometeor state variables affects the main-

tenance of the tornadic supercell during the forecast

from a storm dynamics point of view. Surface temper-

atures from all three experiments are shown in Fig. 15.

Method mixing ratio generates a smaller and weaker

cold pool compared to method dBZ, while the cold

pool from method logarithm is more extensive and

stronger than from method dBZ. Generally, the cold

pool is developed through the sublimation, evapora-

tion, and melting of hydrometeors (Dowell et al. 2011).

The cold pool in all three experiments corresponds well

with the magnitude of the graupel mixing ratios aloft in

their own simulations (Fig. 14). For method logarithm,

the greatest graupel mixing ratios aloft lead to the

greatest cooling and the largest precipitation loading

compared to the other two experiments. The weakest

cold pool from method mixing ratio results from the

least graupel mixing ratio aloft with the least loading

and cooling.

To investigate the impact of the simulated cold pool

on the intensity of the supercell, vertical cross sections

along the strong updraft cores are plotted in Fig. 16. It is

hypothesized that the realistic cold pool in method dBZ

leads to the constructive interaction between surface

gust front and the updraft aloft associated with the

midlevel mesocyclone, which maintains the supercell

FIG. 12. The KTLX reflectivity observations at 1 km AGL at 15-min interval during the forecast period from 2200 to 2300 UTC.
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FIG. 13. The reflectivity (colors; dBZ) and vertical vorticity (contours from 0.001 to 0.01 s21 at 0.001 s21 interval) at 1 km AGL for

(a)–(e)method dBZ, (f)–(j) method logarithm, (k)–(o)methodmixing ratio, and (p)–(t)method dBZ thom. The analyses at 2200UTC are

shown in the first row; 15-min, 30-min, 45-min, and 1-h forecasts are shown in the second to fifth rows, respectively. The overlaid line in

each panel is as in Fig. 7.
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during the entire 1-h period. Compared to method

dBZ, method logarithm has a stronger cold pool, and

its updraft is tilted by the gust front produced by the

cold pool (Fig. 16b), which prevents the low-level

circulation from constructively interacting with the

midlevel mesocyclones (Engerer et al. 2008; Zheng

and Chen 2014); while method mixing ratio has the

weakest cold pool, which is not able to enhance the

midlevel mesocyclone due to the small temperature

gradients across the outflow boundaries (Markowski

et al. 1998).

f. Application of method dBZ with the Thompson
microphysics scheme

As discussed inYussouf et al. (2013), the quality of the

supercell forecast can be dependent on the adopted

microphysics scheme. To reveal to what extent the less

ideal reflectivity forecast shown in Fig. 13 is due to

the use of the single-moment microphysics scheme, and

also to demonstrate the easiness of using method dBZ

without involving the TLA of a more complicated re-

flectivity operator associated with a more complex mi-

crophysics scheme, in this section the Thompson

microphysics scheme is applied in place of WSM6 for

method dBZ, denoted as method dBZ thom. The sim-

ulated reflectivity is computed withinWRF-ARWand is

consistent with the Thompson scheme. Method dBZ is

chosen for such experiments because method dBZ ex-

periment with the WSM6 microphysics scheme pro-

duced the best analysis and forecast.

Forecast probabilities of vorticity exceeding 0.003 s21

at 150m AGL from method dBZ thom are shown in

Fig. 10d.Method dBZ thom produces a similar low-level

vorticity probabilistic forecast compared to method

dBZ, but the vorticity swaths are displaced southeast

beyond the 30-min lead time compared to method dBZ,

which uses the WSM6 scheme. Evolution of the vertical

velocity and vorticity at 4-km AGL from the control

analysis and forecast of method dBZ thom are plotted in

Figs. 11v–z,aa,ab. Similar to method dBZ, method dBZ

thom maintains the storm during the entire 1-h forecast.

Method dBZ thom is also able to reproduce the hook-

echo structure (Fig. 13p) as well as the strong rotation at

1 km AGL, and compares well with the KLTX radar

observation (Fig. 12a). Compared to method dBZ, the

simulated reflectivity in the forward-flank region is

much closer to the distributions and intensities of the

observed forward-flank regions in method dBZ thom

during the entire forecast period (Figs. 13q–t). This re-

sults from the greater flexibility in the hydrometeor size

distributions in the Thompson microphysics scheme

(Yussouf et al. 2013).

FIG. 14. The graupel mixing ratios (colors, 1023 kg kg21 interval) at 5 km AGL from the analyses of (a) method

dBZ, (b) method logarithm, and (c) method mixing ratio.
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6. Conclusions and discussion

A series of studies have proven the usefulness of radar

data assimilation for convective-scale NWP. However,

when the reflectivity observation is directly assimilated,

variational methods suffer from several problems asso-

ciated with the use of the tangent linear approximation

of the nonlinear reflectivity observation operator. This

study reveals and demonstrates these problems in the

GSI-based EnVar. When a hydrometeor mixing ratio is

used as the state variable (method mixing ratio), due to

the small hydrometeor mixing ratios, the gradient of the

cost function contribution from reflectivity can be much

larger than the gradient contribution from radial ve-

locity. Such significant differences of the gradients

among different variables can prevent efficient conver-

gence. The logarithmic hydrometeor mixing ratio

method (method logarithm) can help to alleviate this

issue. However, the tangent linear of the reflectivity

observation operator associated with the logarithmic

hydrometeor mixing ratio produces spuriously large

hydrometeor increments. In addition, the linear

approximation of the operators contributes to the

overestimate and underestimate of hydrometeor in-

crements in method logarithm and method mixing ratio,

respectively. In this study, a new method to directly as-

similate the reflectivity is introduced in the EnVar

framework to solve the above problems. The new

method augments the state vector to include reflectivity

as a state variable (method dBZ). Therefore, neither the

tangent linear nor the adjoint of the reflectivity operator

are needed in the variational framework. This new

method is derived and implemented in the GSI-based

EnVar data assimilation system. It is revealed that

method dBZ solves the aforementioned problems in

method mixing ratio and method logarithm.

The new method (method dBZ), together with

method mixing ratio and method logarithm, is further

examined using the analysis and prediction of the 8 May

2003 Oklahoma City tornadic supercell storm. The ex-

periments are conducted with WRF-ARW at a 2-km

convection allowing resolution with the WSM6 micro-

physics scheme. A 45-member ensemble is used in the

GSI-based EnVar system. The assimilation starts at

2100 UTC 8May 2003. The initial ensemble and control

background are downscaled from ensemble analyses

and their mean of the mesoscale ensembles, respec-

tively. Radar observations including both reflectivity and

radial velocity are assimilated every 5min for a total

period of 1 h. The best results are obtained with method

FIG. 15. Surface temperature (colors, 18C interval) at the analyses time of 2200 UTC from (a) method dBZ,

(b) method logarithm, and (c) method mixing ratio.
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dBZ. The probabilistic forecast of strong low-level vor-

ticity derived from the ensemble from method dBZ fol-

lows with the observed tornado track for both the

location and longevity of the storm much better than

method mixing ratio and method logarithm. The pre-

dicted tornadic supercell initialized from the analysis

using method dBZmaintains the strong midlevel updraft

and vorticity during the entire 1-h forecast period. In

comparison, the supercell storm dissipates after around

5–10 and 10–20min, respectively, for method logarithm

andmethodmixing ratio. Detailed diagnostics reveal that

method dBZmore correctly analyzes hydrometeor fields

such as graupel mixing ratio. Such an analysis of the hy-

drometeor fields leads to constructive interaction of the

cold pool, the surface gust front, and the updraft associ-

ated with the midlevel mesocyclone. In contrast, such

constructive interaction ismissing due to overly extensive

and overly constrained hydrometeor analyses in method

logarithm and method mixing ratio, respectively.

The method dBZ experiment was repeated with

Thompson microphysics scheme. Similar to the WSM6

scheme, the Thompson scheme maintains the tornado-

producing supercell for the entire 1-h forecast period.

The reflectivity distribution in the forward flankmatches

the reflectivity observations better with the Thompson

scheme than with the WSM6 scheme. However, the

Thompson scheme has more track forecast errors with

surface vorticity swaths displaced more southeastward

FIG. 16. Vertical cross sections along the strong updraft cores of winds (vector; m s21) and near-surface cold pool

(shaded; 8C) valid at 30-min forecast from the analyses of (a) method dBZ, (b) method logarithm, and (c) method

mixing ratio. Midlevel updraft (contours from 15 to 25m s21 at 10m s21 interval) and potential temperature

(contours from 300 to 320K at 4-K interval) are indicated by blue lines and green lines, respectively.
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than both the reality and the WSM6 scheme after the

30-min forecast.

As pointed out in section 2a, in this study the GSI-

based EnVar system is employed where the background

error covariance is fully contributed by the ensemble. As

discussed in Michel et al. (2011) and Johnson et al. (2015),

for convective-scale DA, the static covariance, if con-

structed properly, may help produce reflectivity more ef-

ficiently at locations where the ensemble background is

‘‘clear air’’ but where the observation is precipitating.

Michel et al. (2011) andDescombes et al. (2015) provided a

promising approach for including hydrometeor mixing ra-

tios in the static background error covariance where co-

variance between hydrometeor mixing ratio and other

variables were considered. A similar approach can be ap-

plied when the reflectivity is included in the state variables.

The impact of including the static covariance in method

dBZ is left for future study.

In a traditional incremental variational framework

such as GSI, outer loops are used to reduce the errors

associated with the tangent linear of the nonlinear ob-

servation operator (Rosmond and Xu 2006). In the new

method, the reflectivity is included as part of the state

variable by precalculating the reflectivity from the first

guesses outside the minimization. In other words, inside

the minimization there are no such steps as applying

nonlinear reflectivity operator and its associated TLA.

Therefore, the new method avoids the need of using

outer loops in both 3DEnVar and 4DEnVar.

The newly proposed method is still based on the cost

function derived from the Gaussian assumption. For

convective-scale data assimilationwhere nonlinearity and

non-Gaussianity are present in the error distributions for

both the prior and the observation, methods need to be

developed to rigorously take into account the deviation

from the Gaussian distribution assumption. Methods that

consider higher-order moments (e.g., Hodyss 2012) or

relax the parametric distribution assumption (e.g.,

Poterjoy 2016) become increasingly computationally

feasible. Initial studies of examining such methods for

radar DA have only just begun (Poterjoy et al. 2016).

Comparison of the proposed method with such non-

Gaussian filters will be left for future studies.

While encouraging results are obtained by examining

the newly proposed method with one supercell case,

more robust conclusions should be drawnwith systematic

experiments using more cases. The comparison of the

proposed EnVar without TLA of the nonlinear operator

with other ensemble-based data assimilation methods

such as the pure EnKF is also left for future studies.
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